Acetylation of a fucosyl residue at the reducing end of Mesorhizobium loti nod factors is not essential for nodulation of Lotus japonicus.

نویسندگان

  • Satoshi Shibata
  • Hisayuki Mitsui
  • Hiroshi Kouchi
چکیده

NodMl-V(C(18:1), Me, Cb, AcFuc) is a major component of lipo-chitin oligosaccharides (LCOs), or Nod factors, produced by Mesorhizobium loti. The presence of a 4-O-acetylated fucosyl residue (AcFuc) at the reducing end has been thought to be essential for symbiotic interactions with the compatible host plant, Lotus japonicus. We generated an M. loti mutant in which the nolL gene is disrupted; nolL has been shown to encode acetyltransferase that is responsible for acetylation of the fucosyl residue. The nolL disruptant Ml107 produced LCOs that lacked acetylation of fucosyl residues as expected, but exhibited nodulation performance on L. japonicus as efficiently as the wild-type M. loti strain MAFF303099. We show that LCOs without acetylation of a fucosyl residue purified from Ml107 are also able to induce abundant root hair deformation and nodule primordium formation. These results indicate that NolL-dependent acetylation of a fucosyl residue at the reducing end of M. loti LCOs is not essential for nodulation of L. japonicus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The nolL gene from Rhizobium etli determines nodulation efficiency by mediating the acetylation of the fucosyl residue in the nodulation factor.

The nodulation factors (Nod factors) of Rhizobium etli and R. loti carry a 4-O-acetyl-L-fucosyl group at the reducing end. It has been claimed, based on sequence analysis, that NolL from R. loti participates in the 4-O-acetylation of the fucosyl residue of the Nod factors, as an acetyl-transferase (D. B. Scott, C. A. Young, J. M. Collins-Emerson, E. A. Terzaghi, E. S. Rockman, P. A. Lewis, and ...

متن کامل

Mesorhizobium loti produces nodPQ-dependent sulfated cell surface polysaccharides.

Leguminous plants and bacteria from the family Rhizobiaceae form a symbiotic relationship, which culminates in novel plant structures called root nodules. The indeterminate symbiosis that forms between Sinorhizobium meliloti and alfalfa requires biosynthesis of Nod factor, a beta-1,4-linked lipochitooligosaccharide that contains an essential 6-O-sulfate modification. S. meliloti also produces s...

متن کامل

The Mesorhizobium loti purB gene is involved in infection thread formation and nodule development in Lotus japonicus.

The purB and purH mutants of Mesorhizobium loti exhibited purine auxotrophy and nodulation deficiency on Lotus japonicus. In the presence of adenine, only the purH mutant induced nodule formation and the purB mutant produced few infection threads, suggesting that 5-aminoimidazole-4-carboxamide ribonucleotide biosynthesis catalyzed by PurB is required for the establishment of symbiosis.

متن کامل

Invasion of Lotus japonicus root hairless 1 by Mesorhizobium loti involves the nodulation factor-dependent induction of root hairs.

In many legumes, including Lotus japonicus and Medicago truncatula, susceptible root hairs are the primary sites for the initial signal perception and physical contact between the host plant and the compatible nitrogen-fixing bacteria that leads to the initiation of root invasion and nodule organogenesis. However, diverse mechanisms of nodulation have been described in a variety of legume speci...

متن کامل

LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range.

Legume-Rhizobium symbiosis is an example of selective cell recognition controlled by host/non-host determinants. Individual bacterial strains have a distinct host range enabling nodulation of a limited set of legume species and vice versa. We show here that expression of Lotus japonicus Nfr1 and Nfr5 Nod-factor receptor genes in Medicago truncatula and L. filicaulis, extends their host range to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 46 6  شماره 

صفحات  -

تاریخ انتشار 2005